今天的这篇文章,算是一种补充,同时会列举一些常见的算法题,如何用这些技巧来解决,通过使用这些方法,可以让一些算法题变的更加简单。
1.用 n & (n - 1)消去 n 最后的一位 1
在 n 的二进制表示中,如果我们对 n 执行
n = n & (n - 1)
那么可以把 n 左右边的 1 消除掉,例如
n = 1001
n - 1 = 1000
n = n & (n - 1) = (1001) & (1000) = 1000
这个公式有哪些用处呢?
其实还是有挺多用处的,在做题的时候也是会经常碰到,下面我列举几道经典、常考的例题。
(1)、判断一个正整数 n 是否为 2 的幂次方
如果一个数是 2 的幂次方,意味着 n 的二进制表示中,只有一个位 是1,其他都是0。我举个例子,例如:
2^0 = 0…..0001
2^1 = 0…..0010
2^2 = 0….0100
2^3 = 0..01000
所以呢,我们只需要判断N中的二进制表示法中是否只存在一个 1 就可以了。按照平时的做法的话,我们可能会对 n 进行移位,然后判断 n 的二进制表示中有多少个 1。所以做法如下
boolean judege(int n) {
int count = 0;
int k = 1;
while (k != 0) {
if ((n & k) != 0) {
count++;
}
k = k << 1;
}
return count == 1;
}
但是如果采用 n & (n - 1) 的话,直接消去 n 中的一个 1,然后判断 n 是否为 0 即可,代码如下:
boolean judege(int n){
return n & (n - 1) == 0;//
}
而且这种方法的时间复杂度为 O(1)。
(2)、整数 n 二进制中 1 的个数
对于这种题,我们可以用不断着执行 n & (n - 1),每执行一次就可以消去一个 1,当 n 为 0 时,计算总共执行了多少次即可,代码如下:
public int NumberOf12(int n) {
int count = 0;
int k = 1;
while (n != 0) {
count++;
n = (n - 1) & n;
}
return count;
}
(3)、将整数 n 转换为 m,需要改变多少二进制位?
其实这道题和(2)那道题差不多一样的,我们只需要计算 n 和 m 这两个数有多少个二进制位不一样就可以了,那么我们可以先让 n 和 m 进行异或,然后在计算异或得到的结果有多少个 1 就可以了。例如
令 t = n & m
然后计算 t 的二进制位中有多少 1 就可以了,问题就可以转换为(2)中的那个问题了。
2、双指针的应用
在之前的文章中 ,我也有讲过双指针,这里我在讲一下,顺便补充一些例子。
(1)、在链表中的应用
对于双指针,我觉得用的最对的就是在链表这里了,比如“判断单链表是否有环”、“如何一次遍历就找到链表中间位置节点”、“单链表中倒数第 k 个节点”等问题。对于这种问题,我们就可以使用双指针了,会方便很多。我顺便说下这三个问题怎么用双指针解决吧。
例如对于第一个问题
我们就可以设置一个慢指针和一个快指针来遍历这个链表。慢指针一次移动一个节点,而快指针一次移动两个节点,如果该链表没有环,则快指针会先遍历完这个表,如果有环,则快指针会在第二次遍历时和慢指针相遇。
对于第二个问题
一样是设置一个快指针和慢指针。慢的一次移动一个节点,而快的两个。在遍历链表的时候,当快指针遍历完成时,慢指针刚好达到中点。
对于第三个问题
设置两个指针,其中一个指针先移动k个节点。之后两个指针以相同速度移动。当那个先移动的指针遍历完成的时候,第二个指针正好处于倒数第k个节点。
有人可能会说,采用双指针时间复杂度还是一样的啊。是的,空间复杂度和时间复杂度都不会变,但是,我觉得采用双指针,更加容易理解,并且不容易出错。
(2)、遍历数组的应用
采用头尾指针,来遍历数组,也是非常有用的,特别是在做题的时候,例如我举个例子:
题目描述:给定一个有序整数数组和一个目标值,找出数组中和为目标值的两个数。你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
其实这道题也是 leetcode 中的两数之和,只是我这里进行了一下改版。对于这道题,一种做法是这样:
从左到右遍历数组,在遍历的过程中,取一个元素 a,然后让 sum 减去 a,这样可以得到 b,即 b = sum - a。然后由于数组是有序的,我们再利用二分查找,在数组中查询 b 的下标。
在这个过程中,二分查找的时间复杂度是 O(logn),从左到右扫描遍历是 O(n),所以这种方法的时间复杂度是 O(nlogn)。
不过我们采用双指针的方法,从数组的头尾两边向中间夹击的方法来做的话,时间复杂度仅需为 O(n),而且代码也会更加简洁,这里我给出代码吧,代码如下:
public int[] twoSum1(int[] nums, int target) {
int[] res = new int[2];
int start = 0;
int end = nums.length - 1;
while(end > start){
if(nums[start] + nums[end] > target){
end--;
}else if(nums[start] + nums[end] < target){
start ++;
}else{
res[0] = start;
res[1] = end;
return res;
}
}
return res;
}
这个例子相对比较简单,不过这个头尾双指针的方法,真的用的挺多的。
3、a ^ b ^ b = a 的应用
两个相同的数异或之后的结果是 0,而任意数和 0 进行异或的结果是它本身,利用这个特性,也是可以解决挺多题,我在 leetcode 碰到过好几道,这里我举一些例子。
(1)数组中,只有一个数出现一次,剩下都出现两次,找出出现一次的数
这道题可能很多人会用一个哈希表来存储,每次存储的时候,记录 某个数出现的次数,最后再遍历哈希表,看看哪个数只出现了一次。这种方法的时间复杂度为 O(n),空间复杂度也为 O(n)了。
我们刚才说过,两个相同的数异或的结果是 0,一个数和 0 异或的结果是它本身,所以我们把这一组整型全部异或一下,例如这组数据是:1, 2, 3, 4, 5, 1, 2, 3, 4。其中 5 只出现了一次,其他都出现了两次,把他们全部异或一下,结果如下:
由于异或支持交换律和结合律,所以:
1^2^3^4^5^1^2^3^4 = (1^1)^(2^2)^(3^3)^(4^4)^5= 0^0^0^0^5 = 5。
通过这种方法,可以把空间复杂度降低到 O(1),而时间复杂度不变,相应的代码如下
int find(int[] arr){
int tmp = arr[0];
for(int i = 1;i < arr.length; i++){
tmp = tmp ^ arr[i];
}
return tmp;
}